If you have any question, please contact us through the following ways:
If you have any question, please contact us through the following ways:
Figure 1: Wedge-shaped precursor molecules (top left) come together to build a rod-shaped supramolecular polymer composed of their reductively cyclotetramerized disk-shaped monomers, with each new layer of the growing polymer templating the formation of the next (1 and 2 show the preorganization of wedge-shaped precursor phthalonitrile molecules, and 3 shows reductive cyclotrimerization to give a disk-shaped phthalocyanine monomer).
Credit: © 2022 RIKEN Center for Emergent Matter Science
Supramolecular polymers, in contrast, consist of arrays of monomers held together by interactions such as hydrogen bonds, which are weaker, and hence more reversible, than covalent bonds. However, the solvents used for manufacturing supramolecular polymers limit their application and sustainability. “Within two decades, solvent-free chemical manufacturing may be the only approved chemical processes, since the large volumes of solvent used in other manufacturing processes are too damaging to the environment,” says Takuzo Aida from the RIKEN Center for Emergent Matter Science (CEMS).
Aida’s team has been investigating wedge-shaped molecules called phthalonitriles. Now, he and nine CEMS colleagues have discovered that these substances melt when heated and then form multiple thin green crystalline fibers, which are rod-shaped supramolecular polymers. The polymerization process is initiated when four of the wedge-shaped pieces come together to form a flat, circular disk. The disk-shaped assembly—the monomer—can then act as a template surface for the next four wedge-shaped precursor molecules to combine, adding a layer to the structure. This process is repeated, with each new layer of the polymer catalyzing the formation of the next, until long rod-like structures form (Figure 1). The team named their process solvent-free autocatalytic supramolecular polymerization. “The mechanical properties of the crystalline fibers of these supramolecular polymers are analogous to those of poly(alkyl methacrylates),” Aida says. These conventional polymers are used for a range of applications, including plexiglass. The team could create more complex versions of their supramolecular polymers by adding alternate precursor molecules into the mix at certain time points, thereby forming ‘block copolymers’ with bands of different monomers along the length of each rod. Solvent-free autocatalytic supramolecular polymerization could be used to make supramolecular polymers from a range of starting materials. “It may be applicable to the synthesis of polycyclic aromatic hydrocarbons and cyclic peptides,” Aida says. Citation: “Solvent-free autocatalytic supramolecular polymerization” by Zhen Chen, Yukinaga Suzuki, Ayumi Imayoshi, Xiaofan Ji, Kotagiri Venkata Rao, Yuki Omata, Daigo Miyajima, Emiko Sato, Atsuko Nihonyanagi and Takuzo Aida, 14 October 2021, Nature Materials.. DOI: 10.1038/s41563-021-01122-z Source: SciTechDaily